\(\int \frac {(f+g x)^3 (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2}} \, dx\) [690]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 269 \[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {16 (c d f-a e g)^2 \left (2 a e^2 g-c d (7 e f-5 d g)\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{1155 c^4 d^4 e (d+e x)^{5/2}}+\frac {16 g (c d f-a e g)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{231 c^3 d^3 e (d+e x)^{3/2}}+\frac {4 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{33 c^2 d^2 (d+e x)^{5/2}}+\frac {2 (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{11 c d (d+e x)^{5/2}} \]

[Out]

-16/1155*(-a*e*g+c*d*f)^2*(2*a*e^2*g-c*d*(-5*d*g+7*e*f))*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c^4/d^4/e/(e*
x+d)^(5/2)+16/231*g*(-a*e*g+c*d*f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c^3/d^3/e/(e*x+d)^(3/2)+4/33*(-a*
e*g+c*d*f)*(g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c^2/d^2/(e*x+d)^(5/2)+2/11*(g*x+f)^3*(a*d*e+(a*e^
2+c*d^2)*x+c*d*e*x^2)^(5/2)/c/d/(e*x+d)^(5/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {884, 808, 662} \[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {16 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2} (c d f-a e g)^2 \left (2 a e^2 g-c d (7 e f-5 d g)\right )}{1155 c^4 d^4 e (d+e x)^{5/2}}+\frac {16 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2} (c d f-a e g)^2}{231 c^3 d^3 e (d+e x)^{3/2}}+\frac {4 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2} (c d f-a e g)}{33 c^2 d^2 (d+e x)^{5/2}}+\frac {2 (f+g x)^3 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{11 c d (d+e x)^{5/2}} \]

[In]

Int[((f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x)^(3/2),x]

[Out]

(-16*(c*d*f - a*e*g)^2*(2*a*e^2*g - c*d*(7*e*f - 5*d*g))*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(1155*
c^4*d^4*e*(d + e*x)^(5/2)) + (16*g*(c*d*f - a*e*g)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(231*c^3*d
^3*e*(d + e*x)^(3/2)) + (4*(c*d*f - a*e*g)*(f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(33*c^2*
d^2*(d + e*x)^(5/2)) + (2*(f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(11*c*d*(d + e*x)^(5/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 808

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 884

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Dist[n*((c*e*f + c*d
*g - b*e*g)/(c*e*(m - n - 1))), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b,
c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Int
egerQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rubi steps \begin{align*} \text {integral}& = \frac {2 (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{11 c d (d+e x)^{5/2}}+\frac {(6 (c d f-a e g)) \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx}{11 c d} \\ & = \frac {4 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{33 c^2 d^2 (d+e x)^{5/2}}+\frac {2 (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{11 c d (d+e x)^{5/2}}+\frac {\left (8 (c d f-a e g)^2\right ) \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx}{33 c^2 d^2} \\ & = \frac {16 g (c d f-a e g)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{231 c^3 d^3 e (d+e x)^{3/2}}+\frac {4 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{33 c^2 d^2 (d+e x)^{5/2}}+\frac {2 (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{11 c d (d+e x)^{5/2}}+\frac {\left (8 (c d f-a e g)^2 \left (7 f-\frac {5 d g}{e}-\frac {2 a e g}{c d}\right )\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx}{231 c^2 d^2} \\ & = \frac {16 (c d f-a e g)^2 \left (7 f-\frac {5 d g}{e}-\frac {2 a e g}{c d}\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{1155 c^3 d^3 (d+e x)^{5/2}}+\frac {16 g (c d f-a e g)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{231 c^3 d^3 e (d+e x)^{3/2}}+\frac {4 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{33 c^2 d^2 (d+e x)^{5/2}}+\frac {2 (f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{11 c d (d+e x)^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.51 \[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {2 ((a e+c d x) (d+e x))^{5/2} \left (-16 a^3 e^3 g^3+8 a^2 c d e^2 g^2 (11 f+5 g x)-2 a c^2 d^2 e g \left (99 f^2+110 f g x+35 g^2 x^2\right )+c^3 d^3 \left (231 f^3+495 f^2 g x+385 f g^2 x^2+105 g^3 x^3\right )\right )}{1155 c^4 d^4 (d+e x)^{5/2}} \]

[In]

Integrate[((f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x)^(3/2),x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(5/2)*(-16*a^3*e^3*g^3 + 8*a^2*c*d*e^2*g^2*(11*f + 5*g*x) - 2*a*c^2*d^2*e*g*(99*f
^2 + 110*f*g*x + 35*g^2*x^2) + c^3*d^3*(231*f^3 + 495*f^2*g*x + 385*f*g^2*x^2 + 105*g^3*x^3)))/(1155*c^4*d^4*(
d + e*x)^(5/2))

Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.67

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (c d x +a e \right )^{2} \left (-105 g^{3} x^{3} c^{3} d^{3}+70 a \,c^{2} d^{2} e \,g^{3} x^{2}-385 c^{3} d^{3} f \,g^{2} x^{2}-40 a^{2} c d \,e^{2} g^{3} x +220 a \,c^{2} d^{2} e f \,g^{2} x -495 c^{3} d^{3} f^{2} g x +16 a^{3} e^{3} g^{3}-88 a^{2} c d \,e^{2} f \,g^{2}+198 a \,c^{2} d^{2} e \,f^{2} g -231 f^{3} c^{3} d^{3}\right )}{1155 \sqrt {e x +d}\, c^{4} d^{4}}\) \(180\)
gosper \(-\frac {2 \left (c d x +a e \right ) \left (-105 g^{3} x^{3} c^{3} d^{3}+70 a \,c^{2} d^{2} e \,g^{3} x^{2}-385 c^{3} d^{3} f \,g^{2} x^{2}-40 a^{2} c d \,e^{2} g^{3} x +220 a \,c^{2} d^{2} e f \,g^{2} x -495 c^{3} d^{3} f^{2} g x +16 a^{3} e^{3} g^{3}-88 a^{2} c d \,e^{2} f \,g^{2}+198 a \,c^{2} d^{2} e \,f^{2} g -231 f^{3} c^{3} d^{3}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}{1155 c^{4} d^{4} \left (e x +d \right )^{\frac {3}{2}}}\) \(188\)

[In]

int((g*x+f)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/1155*((c*d*x+a*e)*(e*x+d))^(1/2)/(e*x+d)^(1/2)*(c*d*x+a*e)^2*(-105*c^3*d^3*g^3*x^3+70*a*c^2*d^2*e*g^3*x^2-3
85*c^3*d^3*f*g^2*x^2-40*a^2*c*d*e^2*g^3*x+220*a*c^2*d^2*e*f*g^2*x-495*c^3*d^3*f^2*g*x+16*a^3*e^3*g^3-88*a^2*c*
d*e^2*f*g^2+198*a*c^2*d^2*e*f^2*g-231*c^3*d^3*f^3)/c^4/d^4

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 340, normalized size of antiderivative = 1.26 \[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {2 \, {\left (105 \, c^{5} d^{5} g^{3} x^{5} + 231 \, a^{2} c^{3} d^{3} e^{2} f^{3} - 198 \, a^{3} c^{2} d^{2} e^{3} f^{2} g + 88 \, a^{4} c d e^{4} f g^{2} - 16 \, a^{5} e^{5} g^{3} + 35 \, {\left (11 \, c^{5} d^{5} f g^{2} + 4 \, a c^{4} d^{4} e g^{3}\right )} x^{4} + 5 \, {\left (99 \, c^{5} d^{5} f^{2} g + 110 \, a c^{4} d^{4} e f g^{2} + a^{2} c^{3} d^{3} e^{2} g^{3}\right )} x^{3} + 3 \, {\left (77 \, c^{5} d^{5} f^{3} + 264 \, a c^{4} d^{4} e f^{2} g + 11 \, a^{2} c^{3} d^{3} e^{2} f g^{2} - 2 \, a^{3} c^{2} d^{2} e^{3} g^{3}\right )} x^{2} + {\left (462 \, a c^{4} d^{4} e f^{3} + 99 \, a^{2} c^{3} d^{3} e^{2} f^{2} g - 44 \, a^{3} c^{2} d^{2} e^{3} f g^{2} + 8 \, a^{4} c d e^{4} g^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{1155 \, {\left (c^{4} d^{4} e x + c^{4} d^{5}\right )}} \]

[In]

integrate((g*x+f)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

2/1155*(105*c^5*d^5*g^3*x^5 + 231*a^2*c^3*d^3*e^2*f^3 - 198*a^3*c^2*d^2*e^3*f^2*g + 88*a^4*c*d*e^4*f*g^2 - 16*
a^5*e^5*g^3 + 35*(11*c^5*d^5*f*g^2 + 4*a*c^4*d^4*e*g^3)*x^4 + 5*(99*c^5*d^5*f^2*g + 110*a*c^4*d^4*e*f*g^2 + a^
2*c^3*d^3*e^2*g^3)*x^3 + 3*(77*c^5*d^5*f^3 + 264*a*c^4*d^4*e*f^2*g + 11*a^2*c^3*d^3*e^2*f*g^2 - 2*a^3*c^2*d^2*
e^3*g^3)*x^2 + (462*a*c^4*d^4*e*f^3 + 99*a^2*c^3*d^3*e^2*f^2*g - 44*a^3*c^2*d^2*e^3*f*g^2 + 8*a^4*c*d*e^4*g^3)
*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^4*d^4*e*x + c^4*d^5)

Sympy [F]

\[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \left (f + g x\right )^{3}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((g*x+f)**3*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)*(f + g*x)**3/(d + e*x)**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.09 \[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {2 \, {\left (c^{2} d^{2} x^{2} + 2 \, a c d e x + a^{2} e^{2}\right )} \sqrt {c d x + a e} f^{3}}{5 \, c d} + \frac {6 \, {\left (5 \, c^{3} d^{3} x^{3} + 8 \, a c^{2} d^{2} e x^{2} + a^{2} c d e^{2} x - 2 \, a^{3} e^{3}\right )} \sqrt {c d x + a e} f^{2} g}{35 \, c^{2} d^{2}} + \frac {2 \, {\left (35 \, c^{4} d^{4} x^{4} + 50 \, a c^{3} d^{3} e x^{3} + 3 \, a^{2} c^{2} d^{2} e^{2} x^{2} - 4 \, a^{3} c d e^{3} x + 8 \, a^{4} e^{4}\right )} \sqrt {c d x + a e} f g^{2}}{105 \, c^{3} d^{3}} + \frac {2 \, {\left (105 \, c^{5} d^{5} x^{5} + 140 \, a c^{4} d^{4} e x^{4} + 5 \, a^{2} c^{3} d^{3} e^{2} x^{3} - 6 \, a^{3} c^{2} d^{2} e^{3} x^{2} + 8 \, a^{4} c d e^{4} x - 16 \, a^{5} e^{5}\right )} \sqrt {c d x + a e} g^{3}}{1155 \, c^{4} d^{4}} \]

[In]

integrate((g*x+f)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*e*x + a^2*e^2)*sqrt(c*d*x + a*e)*f^3/(c*d) + 6/35*(5*c^3*d^3*x^3 + 8*a*c^2*d^2*e*x^
2 + a^2*c*d*e^2*x - 2*a^3*e^3)*sqrt(c*d*x + a*e)*f^2*g/(c^2*d^2) + 2/105*(35*c^4*d^4*x^4 + 50*a*c^3*d^3*e*x^3
+ 3*a^2*c^2*d^2*e^2*x^2 - 4*a^3*c*d*e^3*x + 8*a^4*e^4)*sqrt(c*d*x + a*e)*f*g^2/(c^3*d^3) + 2/1155*(105*c^5*d^5
*x^5 + 140*a*c^4*d^4*e*x^4 + 5*a^2*c^3*d^3*e^2*x^3 - 6*a^3*c^2*d^2*e^3*x^2 + 8*a^4*c*d*e^4*x - 16*a^5*e^5)*sqr
t(c*d*x + a*e)*g^3/(c^4*d^4)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1778 vs. \(2 (245) = 490\).

Time = 0.36 (sec) , antiderivative size = 1778, normalized size of antiderivative = 6.61 \[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate((g*x+f)^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

2/3465*(1155*a*f^3*((sqrt(-c*d^2*e + a*e^3)*c*d^2 - sqrt(-c*d^2*e + a*e^3)*a*e^2)/(c*d) + ((e*x + d)*c*d*e - c
*d^2*e + a*e^3)^(3/2)/(c*d*e))*abs(e)/e + 99*c*d*f^2*g*((15*sqrt(-c*d^2*e + a*e^3)*c^3*d^6 - 3*sqrt(-c*d^2*e +
 a*e^3)*a*c^2*d^4*e^2 - 4*sqrt(-c*d^2*e + a*e^3)*a^2*c*d^2*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*e^6)/(c^3*d^3*e^
2) + (35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^2*e^6 - 42*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*a*e^
3 + 15*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2))/(c^3*d^3*e^5))*abs(e)/e^2 + 99*a*f*g^2*((15*sqrt(-c*d^2*e +
a*e^3)*c^3*d^6 - 3*sqrt(-c*d^2*e + a*e^3)*a*c^2*d^4*e^2 - 4*sqrt(-c*d^2*e + a*e^3)*a^2*c*d^2*e^4 - 8*sqrt(-c*d
^2*e + a*e^3)*a^3*e^6)/(c^3*d^3*e^2) + (35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^2*e^6 - 42*((e*x + d)*c
*d*e - c*d^2*e + a*e^3)^(5/2)*a*e^3 + 15*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2))/(c^3*d^3*e^5))*abs(e)/e -
33*c*d*f*g^2*((35*sqrt(-c*d^2*e + a*e^3)*c^4*d^8 - 5*sqrt(-c*d^2*e + a*e^3)*a*c^3*d^6*e^2 - 6*sqrt(-c*d^2*e +
a*e^3)*a^2*c^2*d^4*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*c*d^2*e^6 - 16*sqrt(-c*d^2*e + a*e^3)*a^4*e^8)/(c^4*d^4*
e^3) + (105*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^3*e^9 - 189*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*
a^2*e^6 + 135*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2)*a*e^3 - 35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(9/2))/
(c^4*d^4*e^7))*abs(e)/e^2 - 11*a*g^3*((35*sqrt(-c*d^2*e + a*e^3)*c^4*d^8 - 5*sqrt(-c*d^2*e + a*e^3)*a*c^3*d^6*
e^2 - 6*sqrt(-c*d^2*e + a*e^3)*a^2*c^2*d^4*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*c*d^2*e^6 - 16*sqrt(-c*d^2*e + a
*e^3)*a^4*e^8)/(c^4*d^4*e^3) + (105*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^3*e^9 - 189*((e*x + d)*c*d*e -
 c*d^2*e + a*e^3)^(5/2)*a^2*e^6 + 135*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2)*a*e^3 - 35*((e*x + d)*c*d*e -
c*d^2*e + a*e^3)^(9/2))/(c^4*d^4*e^7))*abs(e)/e + c*d*g^3*((315*sqrt(-c*d^2*e + a*e^3)*c^5*d^10 - 35*sqrt(-c*d
^2*e + a*e^3)*a*c^4*d^8*e^2 - 40*sqrt(-c*d^2*e + a*e^3)*a^2*c^3*d^6*e^4 - 48*sqrt(-c*d^2*e + a*e^3)*a^3*c^2*d^
4*e^6 - 64*sqrt(-c*d^2*e + a*e^3)*a^4*c*d^2*e^8 - 128*sqrt(-c*d^2*e + a*e^3)*a^5*e^10)/(c^5*d^5*e^4) + (1155*(
(e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^4*e^12 - 2772*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*a^3*e^9 + 2
970*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2)*a^2*e^6 - 1540*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(9/2)*a*e^3 +
 315*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(11/2))/(c^5*d^5*e^9))*abs(e)/e^2 - 231*c*d*f^3*((3*sqrt(-c*d^2*e + a
*e^3)*c^2*d^4 - sqrt(-c*d^2*e + a*e^3)*a*c*d^2*e^2 - 2*sqrt(-c*d^2*e + a*e^3)*a^2*e^4)/(c^2*d^2) + (5*((e*x +
d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*e^3 - 3*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2))/(c^2*d^2*e^2))*abs(e)/e
^3 - 693*a*f^2*g*((3*sqrt(-c*d^2*e + a*e^3)*c^2*d^4 - sqrt(-c*d^2*e + a*e^3)*a*c*d^2*e^2 - 2*sqrt(-c*d^2*e + a
*e^3)*a^2*e^4)/(c^2*d^2) + (5*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*e^3 - 3*((e*x + d)*c*d*e - c*d^2*e +
 a*e^3)^(5/2))/(c^2*d^2*e^2))*abs(e)/e^2)/e

Mupad [B] (verification not implemented)

Time = 12.43 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.15 \[ \int \frac {(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {2\,g^2\,x^4\,\left (4\,a\,e\,g+11\,c\,d\,f\right )}{33}-\frac {32\,a^5\,e^5\,g^3-176\,a^4\,c\,d\,e^4\,f\,g^2+396\,a^3\,c^2\,d^2\,e^3\,f^2\,g-462\,a^2\,c^3\,d^3\,e^2\,f^3}{1155\,c^4\,d^4}+\frac {x^2\,\left (-12\,a^3\,c^2\,d^2\,e^3\,g^3+66\,a^2\,c^3\,d^3\,e^2\,f\,g^2+1584\,a\,c^4\,d^4\,e\,f^2\,g+462\,c^5\,d^5\,f^3\right )}{1155\,c^4\,d^4}+\frac {2\,c\,d\,g^3\,x^5}{11}+\frac {2\,g\,x^3\,\left (a^2\,e^2\,g^2+110\,a\,c\,d\,e\,f\,g+99\,c^2\,d^2\,f^2\right )}{231\,c\,d}+\frac {2\,a\,e\,x\,\left (8\,a^3\,e^3\,g^3-44\,a^2\,c\,d\,e^2\,f\,g^2+99\,a\,c^2\,d^2\,e\,f^2\,g+462\,c^3\,d^3\,f^3\right )}{1155\,c^3\,d^3}\right )}{\sqrt {d+e\,x}} \]

[In]

int(((f + g*x)^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2))/(d + e*x)^(3/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((2*g^2*x^4*(4*a*e*g + 11*c*d*f))/33 - (32*a^5*e^5*g^3 - 462*a^
2*c^3*d^3*e^2*f^3 + 396*a^3*c^2*d^2*e^3*f^2*g - 176*a^4*c*d*e^4*f*g^2)/(1155*c^4*d^4) + (x^2*(462*c^5*d^5*f^3
- 12*a^3*c^2*d^2*e^3*g^3 + 66*a^2*c^3*d^3*e^2*f*g^2 + 1584*a*c^4*d^4*e*f^2*g))/(1155*c^4*d^4) + (2*c*d*g^3*x^5
)/11 + (2*g*x^3*(a^2*e^2*g^2 + 99*c^2*d^2*f^2 + 110*a*c*d*e*f*g))/(231*c*d) + (2*a*e*x*(8*a^3*e^3*g^3 + 462*c^
3*d^3*f^3 + 99*a*c^2*d^2*e*f^2*g - 44*a^2*c*d*e^2*f*g^2))/(1155*c^3*d^3)))/(d + e*x)^(1/2)